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Abstract

[355] In this paper, we combine the theory of probability aggrega-
tion with the theory of meta-induction and show that this allows
for optimal predictions under expert advice. The full paper to this
contribution is published as (Feldbacher-Escamilla and Schurz 2020b,
http://doi.org/10.1007/s10472-019-09648-4).
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1 Introduction

Probability aggregation is an expansion of the theory of judgment aggregation
and addresses the question of how to aggregate probability distributions. In
past, research in this field centred around the disciplines of economics and
political science, law, and philosophy (List and Pettit 2002). Recently, however,
increasing work stems also from computer science and artificial intelligence
(Rossi, Venable, and Walsh 2011).

We suggest to interpret the weights in characterisation results of linear
probability aggregation (cf. section 2) in a success-based way. By cashing out
results on no-regret methods for prediction under expert advice of the field of
online machine learning (cf. section 3) we show that fixing the parameters in a
success-based way allows for optimal probability aggregation (cf. section 4).

[*][This text is published under the following bibliographical data: Feldbacher-Escamilla, Chris-
tian J. and Schurz, Gerhard (2020a). “Meta-Induction, Probability Aggregation, and Optimal Scor-
ing”. In: KI 2020: Advances in Artificial Intelligence. Lecture Notes in Computer Science and Artificial
Intelligence. Volume 12325. Ed. by Schmid, Ute, Klügl, Franziska, and Wolter, Diedrich. Cham:
Springer Nature, pp. 355–357. DOI: 10.1007/978- 3- 030- 58285- 2. All page numbers of the
published text are in square brackets. For more information about the underlying project, please
have a look at http://cjf.escamilla.academia.name.]
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2 Linear Probability Aggregation

The theory of probability aggregation deals with the problem of how to aggre-
gate a set of probability distributions. Abstractly speaking, the question is how
to characterise a probability aggregation rule f which takes as input a set of n
probability distributions P1, . . . , Pn and generates as output a/the aggregated
probability distribution Paggr = f (P1, . . . , Pn). So-called “linear probability ag-
gregation rules” have the following form of a weighted arithmetic mean:

Paggr =
n

∑
i=1

wi · Pi where wi ≥ 0 and w1 + · · ·+ wn = 1 (AM)

Different interpretations of the weights allow for different specifications. Here
we want to argue for interpreting the weights in a regret-based way, because
such an interpretation allows for optimal probability aggregation. [356]

3 Optimality in an Expert Advice Setting

In online machine learning, regret bounds of methods for predictions under
expert advice are studied (Cesa-Bianchi and Lugosi 2006). The idea is to con-
sider a series of events (E) whose outcomes (valt(E)) have to be predicted by
so-called experts or candidate methods (P1,t, . . . , Pn,t of n candidate methods).
Given these predictions, the task is to construct a meta-inductive prediction
method Pmi,t that uses the candidate method’s forecast as input and aims at
optimality by approaching the predictive success of the best expert (Schurz
2008, 2019).

We assume that all the mentioned values are within the unit interval. Then
we define Pmi,t by keeping track of the success rate s of a candidate method
i via summing up its score (which is 1 minus the loss l of i’s prediction—l is
within [0, 1] and convex) up to round t and then take the average. Afterwards,
we define weights w via cutting off and normalisation (Schurz 2008, sect.1 and
sect.7):

si,t =

t
∑

u=1
1 − l(Pi,u, valu(E))

t
wi,t =

max(0, si,t − smi,t)
n
∑

j=1
max(0, sj,t − smi,t)

If Pmi outperforms all other methods, averaging applies, so the weights are
always positive and sum up to 1. Based on this, we can define a weighted-
average meta-inductive method (MI) as a linear combination (Cesa-Bianchi
and Lugosi 2006; Schurz 2008, sect.2.1 resp. sect.7):

Pmi,t+1 =
n

∑
i=1

wi,t · Pi,t+1 (MI)
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Regarding the success rate of (MI) one can prove the following bound with
respect to the success rates of the candidate methods (Cesa-Bianchi and Lugosi
2006; Schurz 2008, sect.2.1f resp. 7):

Theorem 1. Given the loss function l is convex it holds:

si,t − smi,t ≤
√

n/t ∀i ∈ {1, . . . , n}, so lim
t→∞

max(s1,t, . . . , sn,t)− smi,t ≤ 0

This theorem shows that (MI) is a no-regret method, and that its success rate
converges to or outperforms that of the best performing candidate method.

4 Optimal Probability Aggregation

In probabilistic prediction games, each candidate method identifies the pre-
dicted real value with its credence of the predicted event. We expand the
framework from above: Now it contains a series of events represented by ran-
dom variables E1, E2, . . . within a space of discrete, mutually disjoint, and ex-
haustive values v1, . . . , vk. In order to indicate which value a random variable
took on at a specific round, we assume a valuation function val to be given
by valt(vm) = 1 if the value of Et is vm and valt(vm) = 0 otherwise. Predic-
tions are the credences of n [357] candidate methods for each event variable
Et in the series, represented by probability distributions P1, . . . , Pn such that
∑k

m=1 Pi,t(vm) = 1 and Pi,t(vm) ≥ 0. The probabilistic meta-inductive method
Pmi is also represented by a probability distribution. In order to define it, we
average the success-rates for the individual values of the value space. Let us
first define such an average loss measure lav:

lav
i,t =

k
∑

m=1
l(Pi,t(vm), valt(vm))

k
Note that if l is the quadratic loss function, then lav is the Brier score for a
particular round (Brier 1950). The general Brier score can be calculated then
by summing up all the scores up to round t and dividing them by t (that
is the per round loss averaged over all values of the value space). Now
we can define a measure for average success sav

i,t in analogy to s (simply re-
place l by lav in the definition of si,t above). Likewise, we define weights wav

i,t
for the probabilistic predictions (simply replace s by sav in the definition of
wi,t above). Finally, we define the meta-inductive method for weighted aver-
age probability aggregation based on these weights in accordance with (AM):
Pmi,t+1 = ∑n

i=1 wav
i,t · Pi,t+1. Since we assumed that l is convex, also lav is con-

vex. To recognize this, we just have to hint to the mathematical fact that if
the loss function l is convex with respect to all values of the value space, then
also averaging among the losses with respect to all values of the value space is
convex. Since the definition of Pmi is an instance of (MI), and since lav used to
determine the weights wav is convex, we can transfer the no-regregt optimality
result of Pmi to Pmi straightforwardly:
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Theorem 2. Given the loss function l is convex it holds:

sav
i,t − sav

mi,t ≤
√

n/t ∀i ∈ {1, . . . , n}, so lim
t→∞

max(sav
1,t, . . . , sav

n,t)− sav
mi,t ≤ 0

To conclude: Success-based weighting allows for optimal probability aggrega-
tion.
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